

Gretel

An algorithm for recovering haplotypes from metagenomes. Sister to Hansel [http://hansel.readthedocs.io/en/latest/].

	Gretel
	What is it?

	What can I use it for?

	Why should I use it?

	Requirements

	Usage

	Citation

	License

	Protocol
	Read Alignment

	Variant Calling

	Invocation of Gretel

	Gretel Outputs

	History
	0.0.2-wip

	0.0.1

Indices and tables

	Index

	Module Index

	Search Page

Gretel

An algorithm for recovering haplotypes from metagenomes.
Sister to Hansel [https://github.com/SamStudio8/hansel].

What is it?

Gretel is a Python package providing a command line tool for the recovery of haplotypes
from metagenomic data sets. Gretel parses an alignment of reads into a Hansel matrix
and uses the evidence of SNP pairs observed to appear on the same reads to probabilistically
reconstruct the most likely haplotypes.

Gretel uses an L’th order Markov chain model to reconstruct likely sequences
of variants that constitute haplotypes in the real metagenome.
Our approach involves graph-like traversal of the data within the Hansel matrix.
Edges are probabilitically weighted based on the evidence on the reads, as well as
the haplotype as it has been reconstructed so far.

What can I use it for?

Gretel is designed to recover haplotypes from your data set, without the need for
setting (or optimisation) of any parameters.
Gretel does not require a priori knowledge of your input data (such as its contents, or
the true number of haplotypes) and makes no assumptions
regarding the distributions of alleles at variant sites and uses the available evidence
from the aligned reads without altering or discarding the observed varations.

Why should I use it?

Gretel is the first tool capable of recovering haplotypes from metagenomes.
Whilst tools exist for analogous haplotyping problems, such as the assembly of
viral quasispecies, typically these tools rely on overlap approaches that create
too many unranked haplotypes. Gretel is capable of ranking the haplotypes it
outputs by their likelihood.

Gretel requires no parameters and our approach is robust to sequencing error
and misalignment noise.

Requirements

$ pip install numpy hanselx pysam PyVCF

Install

$ pip install gretel

Usage

You will require a sorted BAM containing your reads, aligned to some pseudo-reference.
You can use any sequence as your reference, such as a consensus assembly of the
metagenomic reads, or a known strain reference (such as HIV-1).
You must bgzip and tabix your VCF.

$ gretel <bam> <vcf.gz> <contig> -s <1-start> -e <1-end> --master <master.fa> -o <outdir>

Citation

Paper pending...

License

Hansel and Gretel are distributed under the MIT license, see LICENSE.

Protocol

Gretel provides a command line tool for the recovery of haplotypes.
We recommend the following protocol.

Read Alignment

Gretel requires your reads to be aligned to a common reference. This is to
ensure that reads share a co-ordinate system, on which we can call for variants
and recover haplotypes. The reference itself is of little consequence, though
dropped reads will lead to evidence to be unavailable to Gretel.

Construction of a de novo consensus assembly for a metagenome is left as an exercise
for the reader. Our lab has traditionally been using velvet, but recommendations
have led me to find Ray.

We used bowtie2 during our experiments. We increased its sensitivity with
the following parameters to increase alignment rates:

bowtie2 --local -D 20 -R 3 -L 3 -N 1 -p 8 --gbar 1 --mp 3

See the blog post `bowtie2: Relaxed Parameters for Generous Alignments to Metagenomes
<https://samnicholls.net/2016/12/24/bowtie2-metagenomes/`_ for more information.

Sort and index the alignment.

Variant Calling

Gretel is robust to sequencing error and misalignment noise, thus the
calling of variants need not be carefully conducted. Typically we have used samtools,
but for our own Gretel pipeline, we have aggressively called all heterogenous sites
in an alignment as a SNP using the snpper tool in our gretel-test repository [https://github.com/SamStudio8/gretel-test].

For somewhat questionable reasoning, we currently require a compressed and indexed VCF:

bgzip <my.vcf>
tabix <my.vcf.gz>

Invocation of Gretel

As described in the README, Gretel is invoked as follows:

gretel <my.sort.bam> <my.vcf.gz> <contig> [-s 1startpos] [-e 1endpos] [--master master.fa] [-o output_dir]

You must provide your sorted BAM, compressed VCF, and the name of the contig on which
to recover haplotypes. Use -s and -e to specify the positions on the aligned reads between which
to recover haplotypes from your metagenome.

By default, Gretel will output a FASTA containing the recovered SNPs, in order, for each haplotype.
Providing an optional “master” FASTA sequence will permit Gretel to “fill in” the non-SNP positions
(i.e. the positions between -s and -e that do not appear in the VCF) with the nucleotide from
the pseudo-reference.

Gretel Outputs

out.fasta

A FASTA containing each of the recovered sequences, in the order they were found.
Each sequence is named <iteration>__-<log10 likelihood>. Sequences are not wrapped.

gretel.crumbs

Additionally, Gretel outputs a whimsically named crumbs file, containing some potentially
interesting metadata, as well as a record of each recovered haplotype.
The first row is a comment containing the following (in order):

	The number of SNPs across the region of interest

	Unused (currently)

	Unused (currently)

	The suggested value of L for the L‘th order Markov chain used to reconstruct haplotypes

	The chosen value of L for the L‘th order Markov chain

	The average likelihood of the returned haplotypes given the state of the Hansel matrix at the time the haplotypes were each recovered

	The average likelihood of the returned haplotypes given the state of the Hansel matrix at the time the reads were parsed

	The average number of observations removed from the Hansel matrix by the reweighting mechanism

The rest of the file contains tab-delimited metadata for each recovered haplotype:

	The iteration number, starting from 0

	The weighted likelihood of the haplotype, given the Hansel matrix at the time the haplotype was recovered

	The unweighted likelihood of the haplotype, given the Hansel matrix at the time the reads were parsed

In practice, we rank with the weighted likelihoods to discern the haplotypes most likely to exist in the metagenome.
One may attempt to use the unweighted likelihoods as a means to compare the abundance, or read support, between the returned haplotypes (i.e. not necessarily the metagenome as a whole).

History

0.0.2-wip

	Improve documentation.

	Provide util subpackage for filling Hansel structure with BAM observations.

	Explicitly provide possible symbols to Hansel.

	Improve plotting

	Remove process_hits and process_refs as these are no longer needed.

	Rename establish_path to generate_path

	Rename add_ignore_support3 to reweight_hansel_from_graph so we have some sort of indication of what it does.

	Altered Sphinx configuation.

0.0.1

	Import repository from claw.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gretel	

 	
 	
 gretel.cmd	

 	
 	
 gretel.gretel	

 	
 	
 gretel.util	

Index

 A
 | G
 | L
 | M
 | P
 | R

A

 	
 	append_path() (in module gretel.gretel), [1]

G

 	
 	generate_path() (in module gretel.gretel), [1]

 	gretel (module), [1]

 	
 	gretel.cmd (module), [1]

 	gretel.gretel (module), [1]

 	gretel.util (module), [1]

L

 	
 	load_fasta() (in module gretel.util), [1]

 	
 	load_from_bam() (in module gretel.util), [1]

M

 	
 	main() (in module gretel.cmd), [1]

P

 	
 	process_bam() (in module gretel.gretel), [1]

 	
 	process_vcf() (in module gretel.gretel), [1]

R

 	
 	reweight_hansel_from_path() (in module gretel.gretel), [1]

gretel

	gretel package
	Submodules

	gretel.cmd module

	gretel.gretel module

	gretel.util module

	Module contents

gretel package

Submodules

gretel.cmd module

	
gretel.cmd.main()

	Gretel: A metagenomic haplotyper.

gretel.gretel module

	
gretel.gretel.append_path(path, next_m, next_v)

	Append a selected variant to a given path.
.. deprecated:: 1.0

This method is somewhat of a stub.
It is likely to be deprecated at no notice in future.

	Parameters:	
	path (list{str}) – The current sequence of variants representing a path (haplotype) in progress.

	next_m (str) – The symbol to append to the path.

	next_v (float) – The marginal probability of next_m at the current position.

	Raises:	Exception – Raised if next_m is None.

	
gretel.gretel.generate_path(n_snps, hansel, original_hansel)

	Explore and generate the most likely path (haplotype) through the observed Hansel structure.

	Parameters:	
	n_snps (int) – The number of variants.

	hansel (hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – The Hansel structure currently being explored by Gretel.

	original_hansel (hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – A copy of the Hansel structure created by Gretel, before any reweighting.

	Returns:	
	Path (list{str} or None) – The sequence of variants that represent the completed path (or haplotype), or None
if one could not be successfully constructed.

	Path Probabilities (dict{str, float}) – The unweighted (orignal Hansel) and weighted (current Hansel) joint
probabilities of the variants in the returned path occurring together
in the given order.

	Minimum Marginal (float) – The smallest marginal distribution observed across selected variants.

	
gretel.gretel.process_bam(vcf_handler, bam_path, contig_name, start_pos, end_pos, L, use_end_sentinels, n_threads)

	Initialise a Hansel structure and load variants from a BAM.

	Parameters:	
	vcf_handler (dict{str, any}) – Variant metadata, as provided by gretel.gretel.process_vcf().

	bam_path (str) – Path to the alignment BAM.

	contig_name (str) – The name of the contig for which to recover haplotypes.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	L (int) – The Gretel L-parameter, controlling the number of positions back
from the head of the current path (including the head) to consider
when calculating conditional probabilities.

	use_end_sentinels (boolean) – Whether or not to append an additional pairwise observation between
the final variant on a read towards a sentinel.

	n_threads (int) – Number of threads to spawn for reading the BAM

	Returns:	Gretel Metastructure – A collection of structures used for the execution of Gretel.
The currently used keys are:

	read_support : hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]

	The Hansel structure.

	read_support_o : hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]

	A copy of the Hansel structure stored with the intention of not reweighting its observations.

	meta : dict{str, any}

	A dictionary of metadata returned from the BAM parsing, such as
a list of the number of variants that each read spans.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
gretel.gretel.process_vcf(vcf_path, contig_name, start_pos, end_pos)

	Parse a VCF to extract the genomic positions of called variants.

	Parameters:	
	vcf_path (str) – Path to the VCF file.

	contig_name (str) – Name of the target contig on which variants were called.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	Returns:	Gretel Metastructure – A collection of structures used for the execution of Gretel.
The currently used keys are:

	N : int

	The number of observed SNPs

	snp_fwd : dict{int, int}

	A reverse lookup from the n’th variant, to its genomic position on the contig

	snp_rev : dict{int, int}

	A forward lookup to translate the n’th genomic position to its i’th SNP rank

	region : list{int}

	A masked representation of the target contig, positive values are variant positions

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
gretel.gretel.reweight_hansel_from_path(hansel, path, ratio)

	Given a completed path, reweight the applicable pairwise observations in the Hansel structure.

	Parameters:	
	hansel (hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – The Hansel structure currently being explored by Gretel.

	path (list{str}) – The ordered sequence of selected variants.

	ratio (float) – The proportion of evidence to remove from each paired observation that
was considered to recover the provided path.

It is recommended this be the smallest marginal distribution observed across selected variants.

i.e. For each selected variant in the path, note the value of the
marginal distribution for the probability of observing that particular
variant at that genomic position. Parameterise the minimum value of
those marginals.

	Returns:	Spent Observations – The sum of removed observations from the Hansel structure.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

gretel.util module

	
gretel.util.load_fasta(fa_path)

	A convenient wrapper function for constructing a pysam.FastaFile [http://pysam.readthedocs.io/en/latest/api.html#pysam.FastaFile]

	Parameters:	fa_path (str) – Path to FASTA

	Returns:	FASTA File Interface

	Return type:	pysam.FastaFile [http://pysam.readthedocs.io/en/latest/api.html#pysam.FastaFile]

	
gretel.util.load_from_bam(bam_path, target_contig, start_pos, end_pos, vcf_handler, use_end_sentinels=False, n_threads=1)

	Load variants observed in a pysam.AlignmentFile [http://pysam.readthedocs.io/en/latest/api.html#pysam.AlignmentFile] to
an instance of hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel].

	Parameters:	
	bam_path (str) – Path to the BAM alignment

	target_contig (str) – The name of the contig for which to recover haplotypes.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	vcf_handler (dict{str, any}) – Variant metadata, as provided by gretel.gretel.process_vcf().

	use_end_sentinels (boolean, optional(default=False)) – Whether or not to append an additional pairwise observation between
the final variant on a read towards a sentinel.

Note

Experimental
This feature is for testing purposes, currently it is recommended
that the flag be left at the default of False. However, some
data sets report minor performance improvements for some haplotypes
when set to True.
This flag may be removed at any time without warning.

	n_threads (int, optional(default=1)) – Number of threads to spawn for reading the BAM

	Returns:	Metadata – A dictionary of metadata that may come in useful later.
Primarily used to return a list of integers describing the number of
variants covered by each read in the provided alignment BAM.

	Return type:	dict{str, any}

Module contents

gretel

	gretel package
	Submodules

	gretel.cmd module

	gretel.gretel module

	gretel.util module

	Module contents

gretel package

Submodules

gretel.cmd module

	
gretel.cmd.main()

	Gretel: A metagenomic haplotyper.

gretel.gretel module

	
gretel.gretel.append_path(path, next_m, next_v)

	Append a selected variant to a given path.
.. deprecated:: 1.0

This method is somewhat of a stub.
It is likely to be deprecated at no notice in future.

	Parameters:	
	path (list{str}) – The current sequence of variants representing a path (haplotype) in progress.

	next_m (str) – The symbol to append to the path.

	next_v (float) – The marginal probability of next_m at the current position.

	Raises:	Exception – Raised if next_m is None.

	
gretel.gretel.generate_path(n_snps, hansel, original_hansel)

	Explore and generate the most likely path (haplotype) through the observed Hansel structure.

	Parameters:	
	n_snps (int) – The number of variants.

	hansel (hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – The Hansel structure currently being explored by Gretel.

	original_hansel (hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – A copy of the Hansel structure created by Gretel, before any reweighting.

	Returns:	
	Path (list{str} or None) – The sequence of variants that represent the completed path (or haplotype), or None
if one could not be successfully constructed.

	Path Probabilities (dict{str, float}) – The unweighted (orignal Hansel) and weighted (current Hansel) joint
probabilities of the variants in the returned path occurring together
in the given order.

	Minimum Marginal (float) – The smallest marginal distribution observed across selected variants.

	
gretel.gretel.process_bam(vcf_handler, bam_path, contig_name, start_pos, end_pos, L, use_end_sentinels, n_threads)

	Initialise a Hansel structure and load variants from a BAM.

	Parameters:	
	vcf_handler (dict{str, any}) – Variant metadata, as provided by gretel.gretel.process_vcf().

	bam_path (str) – Path to the alignment BAM.

	contig_name (str) – The name of the contig for which to recover haplotypes.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	L (int) – The Gretel L-parameter, controlling the number of positions back
from the head of the current path (including the head) to consider
when calculating conditional probabilities.

	use_end_sentinels (boolean) – Whether or not to append an additional pairwise observation between
the final variant on a read towards a sentinel.

	n_threads (int) – Number of threads to spawn for reading the BAM

	Returns:	Gretel Metastructure – A collection of structures used for the execution of Gretel.
The currently used keys are:

	read_support : hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]

	The Hansel structure.

	read_support_o : hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]

	A copy of the Hansel structure stored with the intention of not reweighting its observations.

	meta : dict{str, any}

	A dictionary of metadata returned from the BAM parsing, such as
a list of the number of variants that each read spans.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
gretel.gretel.process_vcf(vcf_path, contig_name, start_pos, end_pos)

	Parse a VCF to extract the genomic positions of called variants.

	Parameters:	
	vcf_path (str) – Path to the VCF file.

	contig_name (str) – Name of the target contig on which variants were called.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	Returns:	Gretel Metastructure – A collection of structures used for the execution of Gretel.
The currently used keys are:

	N : int

	The number of observed SNPs

	snp_fwd : dict{int, int}

	A reverse lookup from the n’th variant, to its genomic position on the contig

	snp_rev : dict{int, int}

	A forward lookup to translate the n’th genomic position to its i’th SNP rank

	region : list{int}

	A masked representation of the target contig, positive values are variant positions

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
gretel.gretel.reweight_hansel_from_path(hansel, path, ratio)

	Given a completed path, reweight the applicable pairwise observations in the Hansel structure.

	Parameters:	
	hansel (hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – The Hansel structure currently being explored by Gretel.

	path (list{str}) – The ordered sequence of selected variants.

	ratio (float) – The proportion of evidence to remove from each paired observation that
was considered to recover the provided path.

It is recommended this be the smallest marginal distribution observed across selected variants.

i.e. For each selected variant in the path, note the value of the
marginal distribution for the probability of observing that particular
variant at that genomic position. Parameterise the minimum value of
those marginals.

	Returns:	Spent Observations – The sum of removed observations from the Hansel structure.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

gretel.util module

	
gretel.util.load_fasta(fa_path)

	A convenient wrapper function for constructing a pysam.FastaFile [http://pysam.readthedocs.io/en/latest/api.html#pysam.FastaFile]

	Parameters:	fa_path (str) – Path to FASTA

	Returns:	FASTA File Interface

	Return type:	pysam.FastaFile [http://pysam.readthedocs.io/en/latest/api.html#pysam.FastaFile]

	
gretel.util.load_from_bam(bam_path, target_contig, start_pos, end_pos, vcf_handler, use_end_sentinels=False, n_threads=1)

	Load variants observed in a pysam.AlignmentFile [http://pysam.readthedocs.io/en/latest/api.html#pysam.AlignmentFile] to
an instance of hansel.hansel.Hansel [http://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel].

	Parameters:	
	bam_path (str) – Path to the BAM alignment

	target_contig (str) – The name of the contig for which to recover haplotypes.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	vcf_handler (dict{str, any}) – Variant metadata, as provided by gretel.gretel.process_vcf().

	use_end_sentinels (boolean, optional(default=False)) – Whether or not to append an additional pairwise observation between
the final variant on a read towards a sentinel.

Note

Experimental
This feature is for testing purposes, currently it is recommended
that the flag be left at the default of False. However, some
data sets report minor performance improvements for some haplotypes
when set to True.
This flag may be removed at any time without warning.

	n_threads (int, optional(default=1)) – Number of threads to spawn for reading the BAM

	Returns:	Metadata – A dictionary of metadata that may come in useful later.
Primarily used to return a list of integers describing the number of
variants covered by each read in the provided alignment BAM.

	Return type:	dict{str, any}

Module contents

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Gretel

 		Gretel

 		What is it?

 		What can I use it for?

 		Why should I use it?

 		Requirements

 		Install

 		Usage

 		Citation

 		License

 		Protocol

 		Read Alignment

 		Variant Calling

 		Invocation of Gretel

 		Gretel Outputs

 		out.fasta

 		gretel.crumbs

 		History

 		0.0.2-wip

 		0.0.1

_static/comment.png

_static/plus.png

